機器視覺是一項綜合技術,包括圖像處理、機械工程技術、控制、電光源照明、光學成像、傳感器、模擬與數字視頻技術、計算機軟硬件技術(圖像增強和分析算法、圖像卡、I/O卡等)。一個典型的機器視覺應用系統包括圖像捕捉、光源系統、圖像數字化模塊、數字圖像處理模塊、智能判斷決策模塊和機械控制執行模塊。機器視覺系統基本的特點就是提高生產的靈活性和自動化程度。在一些不適于人工作業的危險工作環境或者人工視覺難以滿足要求的場合,常用機器視覺來替代人工視覺。同時,在大批量重復性工業生產過程中,用機器視覺檢測方法可以大大提高生產的效率和自動化程度。邊緣檢測是機器視覺檢測技術的一種,在邊緣檢測算法中,個步驟用得十分普遍。這是因為大多數場合下,僅僅需要邊緣檢測器指出邊緣出現在圖像某一像素點的附近,而沒有必要指出邊緣的jing確位置或方向。那機器視覺邊緣檢測算法步驟有些呢?1、濾波:邊緣檢測算法主要是基于圖像強度的一階和二階導數,但導數的計算對噪聲很敏感,因此必須使用濾波器來改善與噪聲有關的邊緣檢測器的性能。需要指出,大多數濾波器在降低噪聲的同時也導致了邊緣強度的損失,因此,增強邊緣和降低噪聲之間需要折中。2、增強:增強邊緣的基礎是確定圖像各點鄰域強度的變化值。增強算法可以將鄰域(或局部)強度值有變化的點突顯出來。邊緣增強一般是通過計算梯度幅值來完成的。3、檢測:在圖像中有許多點的梯度幅值比較大,而這些點在特定的應用領域中并不都是邊緣,所以應該用某種方法來確定些點是邊緣點。的邊緣檢測判據是梯度幅值閾值判據。4、定位:如果某一應用場合要求確定邊緣位置,則邊緣的位置可在子像素分辨率上來估計,邊緣的方位也可以被估計出來。在機器視覺系統中,獲得一張量的可處理的圖像是至關重要。系統之所以成功,首先要圖像質量好,特征明顯。一個機器視覺項目之所以失敗,大部分情況是由于圖像質量不好,特征不明顯引起的。要好的圖像,必須要選擇一個合適的光源。光源選型基本要素:對比度:對比度對機器視覺來說非常重要。機器視覺應用的照明的重要的任務就是使需要被觀察的特征與需要被忽略的圖像特征之間產生zui大的對比度,從而易于特征的區分。對比度定義為在特征與其周圍的區域之間有足夠的灰度量區別。好的照明應該能夠需要檢測的特征突出于其他背景。亮度:當選擇兩種光源的時候,zui佳的選擇是選擇更亮的那個。當光源不夠亮時,可能有三種不好的情況會出現。一,相機的信噪比不夠;由于光源的亮度不夠,圖像的對比度必然不夠,在圖像上出現噪聲的可能性也隨即增大。其次,光源的亮度不夠,必然要加大光圈,從而減小了景深。另外,當光源的亮度不夠的時候,自然光等隨機光對系統的影響會zui大。魯棒性:另一個測試好光源的方法是看光源對部件的位置敏感度zui小。當光源放置在攝像頭視野的不同區域或不同角度時,結果圖像應該不會隨之變化。方向性很強的光源,增大了對高亮區域的鏡面反射發生的可能性,這不利于后面的特征提取。好的光源需要能夠使你需要尋找的特征非常明顯,除了是攝像頭能夠拍攝到部件外,好的光源應該能夠產生zui大的對比度、亮度足夠且對部件的位置變化不敏感。光源選擇好了,剩下來的工作就容易多了。具體的光源選取方法還在于試驗的實踐經驗。