BYM—BK標準孔板可用于測量管道中液體、氣體、蒸汽的流量。標準孔板是按國標GB/T2624-93進行設計制造,按JJG640-94進行檢定。無需實流標定。標準孔板可以采用角接取壓(包括環室取壓)、法蘭取壓或D-D/2取壓三種取壓方式。按國標規定進行設計、制造和檢定標準孔板無需實流標定,精度高,結構簡單,制造成本低,但壓力損失較大。標準孔板廣泛用于石油、化工、冶金、電力等行業。是迄今為止應用多的一種流量計。
適用范圍
1、 公稱直徑:50mm≤DN≤1200mm(超出此范圍屬非標準節流裝置)
2、 公稱壓力:PN≤16MPa
3、 孔徑比:0.20≤β≤0.75
4、 雷諾數范圍:當0.20≤β≤0.45時 5000≤ReD
當0.45≤β≤0.75時 10000≤ReD
5、精度:1級
節流孔板壓差的計算
為了計算節流孔板的壓差,需引入一個新的概念——阻塞流壓差Δps。當孔板兩端的壓差Δp增加時,流量qm也增加,當壓差Δp增大到一定值時,縮口處的壓力pvc下降到流體飽和蒸氣壓力pv以下,一部分流體汽化,管道流量不再隨壓差增加而增加,即形成所謂阻塞流現象。此時,孔板兩端的壓差稱為阻塞流壓差Δps。當節流孔板的實際壓差Δp小于其對應的Δps時,就可避免閃蒸或汽蝕的發生。當管道兩端壓差較大時,可采用多級減壓,但每一級節流孔板的實際壓差Δp均應小于本級入口對應的Δps。
根據文獻,多級節流孔板的的壓降按幾何級數遞減,當第1級節流孔板實際壓降為Δp1時,第2級孔板減壓至Δp1/2,第3級孔板減壓至Δp1/22,第4級孔板減壓至Δp1/23,……,第n 1級孔板減壓至Δp1/2n,直減到末級孔板后壓力接近所需壓力為止。
以某廠凝補泵再循環管為例,在機組運行過程中,發現管道振動大。分析原因為:凝補泵在正常運行時,出口壓力約1.5 MPa,補給水箱處的壓力約0.12 MPa,當泵出口的除鹽水經再循環管回流至補給水箱時,由于壓差較大,且管道上只裝了一個電動閘閥而非調節閥,因此引起振動。為了減少振動,在次設計變更中,采用增加節流孔板的方式,實際運行后,泵出口的管道振動有所改善,但節流孔板后的管道出現汽蝕現象。說明靠增加節流孔板來進行降壓的思路是對的,但孔板的選擇應有所調整。
結構形式
1、法蘭取壓、角接取壓、D-D/2取壓方式分別見圖1、圖2、圖3
2、整體式焊接結構見圖4
安裝要求
1、 安裝時應孔板中心、法蘭中心、管道中心和墊片同心,不同心度不得超過0.002D/β。
2、 孔板的正負壓方向,上下游取壓法蘭應與介質流向相符,取壓孔的方位可根據介質不同和變送器的安裝情況確定。
3、 節流裝置與管道連接時,焊接處端面與管道軸線的不垂直度不得大于1°,焊接后內部焊縫應加工處理,使其光滑,無焊巴和焊渣。
4、 取壓法蘭與管道焊接前,應先將管道上的取壓孔鉆好,其直徑與取壓法蘭上的取壓孔徑相同,焊接時取壓法蘭上的取壓孔與管道上的取壓孔對準。
5、 可選帶上、下游直管段。
6、 D-D/2取壓是成套供貨,法蘭連接可直接安裝